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The concept ofcontrolling stochastic resonancehas been recently introduced@L. Gammaitoniet al., Phys.
Rev. Lett.82, 4574~1999!# to enhance or suppress the spectral response to threshold-crossing events triggered
by a time-periodic signal in background noise. Here, we develop a general theoretical framework, based on a
rate equation approach. This generic two-state theory captures the essential features observed in our experi-
ments and numerical simulations.

PACS number~s!: 05.40.2a, 02.50.Ey, 47.20.Ky, 85.25.Dq
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I. INTRODUCTION

Stochastic resonance~SR! is a nonlinear noise-mediate
cooperative phenomenon wherein the coherent response
deterministic signal can be enhanced in the presence o
optimal amount of noise. Since its inception in 1981@1#, SR
has been demonstrated in diverse systems, including sen
neurons, mammalian neuronal tissue, lasers, Supercon
ing quantum interference devices~SQUIDs!, tunnel diodes,
and communications devices@2#. Variations and extension
of the classical definition of SR have also appeared in
literature, in connection with systems having nonperiodic
puts ~e.g., dc, wideband! with the detector response quan
fied by various information-theoretic@3# or spectral cross-
correlation@4# measures.

Recently, we introduced a control scheme which allo
us to enhance or suppress the spectral response in the
SR effect@5#. Our control strategy is applicable when inp
information is transmitted via the crossing of either a thre
old or potential energy barrier. This raises the intriguing p
sibility that in situations where external signals might
potentially deleterious, e.g., electromagnetic field inter
tions with neuronal tissue@6#, their effects could be substan
tially reduced or even eliminated via~externally applied!
control signals.

In this work we present a detailed theoretical treatmen
the control phenomenon, based on a perturbation-theo
development of the response power spectral density for w
input signals and weak barrier modulation amplitudes.
focus on the effect of the barrier modulation~the ‘‘control’’ !
on the output signal power attenuation and amplificationat
the fundamental of the signal frequency. First, however, we
summarize~for the sake of completeness! the recent phe-
nomenological description of the response@5#, based on the
results of experiments carried out on one of the simp
hysteretic bistable devices, the Schmitt trigger.

II. PHENOMENOLOGY OF CONTROLLED SR

The motivation for this investigation was the observ
rich phenomenology created by the interplay of the two dr
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ing frequencies as seen in the output power spectral dens
~PSDs! of a driven Schmitt trigger~ST!. Specifically, for
relatively large barrier modulation amplitudes,digital simu-
lationsof the ST reveal ‘‘dips’’ and peaks in the power spe
tra at combination tonesum1vS6m2vMu, with vS,M being
the signal and barrier frequencies andm1,2 integers. The
phase offsetf between the signal and the barrier modu
tion, as well as the ratio of the frequencies, appear to de
mine the locations of the peaks and dips, with the height~or
depth! determined by the modulation amplitudes. This b
havior is depicted in Figs. 1–4. Figures 1 and 2 show t
PSDs forvM5vS and phasesf50 and f5p/2, respec-
tively. For small signal but relatively strong barrier modul
tion, well-defined dips at the even and odd harmonics
evident in the PSD forf50. Note that the signal and barrie
modulation amplitudes are always taken to be less than
barrier separationb, so that there are no transitions in th
absence of noise. Shifting the phase top/2 results in strong
peaks embedded within the same dips, as displayed in Fi
For double frequency modulationvM52vS and phasef

FIG. 1. The power spectral densityS(v) from a numerical
simulation of the Schmitt trigger shows dips for equal frequen
modulationvM5vS and phasef50. Details of the simulations are
described later in the paper; the data shown correspond to param
valueshS530, hM5200, b5300, s570, vM5350.
317 ©2000 The American Physical Society
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318 PRE 62MARKUS LÖCHER et al.
50, the power spectrum in Fig. 3 displays sharp peaks at
multiples and dips at even multiples of the fundamental f
quencyvS ~i.e., the dips occur at integer multiples ofvM).
For f5p/2, the signal peaks aresuppressed~Fig. 4!. An
exploration of all the observed features in the output PSD
beyond the scope of this work. Instead, following a summ
rization of the experimental results, the remainder of the
per is aimed at reproducing the experimental results for
signal output power at the fundamental frequency, for
special~and somewhat limited! case of small signal and ba
rier modulation amplitudes via a perturbation developme
Hence, the theory cannot reproduce all the features of
numerically generated~using relatively strong barrier modu
lation amplitudes! Figs. 1–4.

The experiments were carried out in a modified ST el
tronic circuit, schematically shown in Fig. 5. The ST is
simple threshold system@7,8# possessing a static hysteret
nonlinearity. The upper and lower threshold voltages
VU5b andVL52b, so that 2b is the~static! threshold sepa-
ration. A subthreshold 64 Hz time-sinusoidal signalS(t)
5ASsinvSt (AS,b) and Gaussian noise~band limited at 10
kHz and ac coupled to the ST! are applied to the input. Then
in the absence of any barrier modulation, the standard
effect can be reproduced at the output of the ST, match
the results of earlier experiments@7# and rate theories@8#.
The measured quantity is the output signal power~SP! at the
fundamental frequencyvS as a function of input noise

FIG. 3. Same as Fig. 1 but withvS5
1
2 vM .

FIG. 2. Same as Fig. 1 but with phasef5p/2.
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power. Here, the SP is defined as the spectral power at
fundamental frequencyvS ~which was taken to be 64 Hz!
minus the continuous noise background power within a sm
frequency range aroundvS ; it is, thus, a measure of th
height of the signal feature above the noise background
the output PSD.

To realize the control scheme we modulate the upper
lower thresholds sinusoidally, VU(t)5b1AMsin(vMt
1f),VL(t)52VU(t), which results in a ‘‘breathing’’ oscilla-
tion ~Figs. 6 and 7! of the barriers with frequencyvM . We
keep the signal and threshold modulating amplitudes fi
such thatAM1AS,b ~no deterministic switching! and in-
vestigate the system’s response as a function of the p
offsetf, which is chosen to be the ‘‘control parameter’’ an
the input noise power.

FIG. 4. Same as Fig. 3 but withf5p/2.

FIG. 5. Circuit diagram for the modified Schmitt trigger. S1, S
S3: Stanford Research DS345 function generators. F: Stanford
search SR560 preamplifier. O1, O2, O3, O4: Burr-Brown ope
tional amplifiers. The resistor values areR151 kV, R255 kV,
R3510 kV, R45100 kV.
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Our experimental results, first presented in@5#, are shown
in the gray-scale plots of Fig. 8, where the signal powe
gray-scale encoded as a function of the phase and input n
power. Analogous results are obtained if the output sign
to-noise ratio is taken as the measure of the response. F
8~a! is simply the classic SR case@2# with no control (AM
50): the signal power passes through a maximum at
optimal noise intensity, with the location of the maximu
depending on the internal parameters, as well as the in
signal amplitudeAS , but only weakly on the signal fre
quencyvS , provided this frequency lies well within the de
vice bandwidth.

Figures 8~b! and 8~c! correspond to the modulated
threshold casesvM5vS , andvM52vS , respectively. The
most striking feature of Fig. 8~b! is a significantsuppression
of the output signal power below its value in the nonmod
lated case@Fig. 8~a!#, at values 0 andp of the control phase
f. Note also that the plot appears symmetric with respec

FIG. 6. The input signalS(t) ~middle trace! relative to the
modulated upper and lower thresholds, for four different pha
The two frequencies are identical:vM5vS . Black and gray distin-
guish the first and second halves of the drive cycle. The arr
indicate the most likely times of switching events.

FIG. 7. Same as Fig. 6, but withvM52vS .
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a phase translation ofp. A suppression behavior is als
present in the case wherevM52vS for f53p/2 @Fig. 8~c!#;
however, in this case, a significant enhancement of the
put SP~compared to the nonmodulated case! is also evident
at phasef5p/2.

The principle goal of this paper is to achieve a quanti
tive understanding of the suppression and enhancemen
fects for each of the two modulation schemes. In Sec. III
derive expressions for the output power at the signal
quency, first for double frequency modulation, then for eq
frequency modulation. Though straightforward, these cal
lations are not trivial: they need to be taken to cubic a
quartic order, respectively, in order to capture the key effe
of controlled SR. In Sec. IV we test these analytic pred

s.

s

FIG. 8. Experimental results: Gray-scale plot of signal power
vS vs phase and noise for~a! no modulation,~b! vM5vS , and~c!
vM52vS . Parameters: vS52p64s21, b5300 mV, AM

5200 mV,AS530 mV. In ~b!, the maximum signal enhanceme
occurs nearf5p/2 andf53p/2, and the maximum suppressio
occurs near phasesf50 andf5p. In ~c!, the maximum signal
enhancement occurs nearf5p/2, and the maximum suppressio
occurs nearf53p/2. Note the differing signal power gray scales
~a!, ~b!, and~c!.
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320 PRE 62MARKUS LÖCHER et al.
tions against numerical simulations of three different bista
systems. Taken together, our results demonstrate that
trolled SR is a generic phenomenon for such systems,
can be understood in a unified way.

Our control scheme, which is implemented via modu
tion of the potential energy barrier by a time-sinusoidal s
nal with controlled phase, must be contrasted to the cas
multiple cyclic inputs applied at the input of a nonline
device. In this case, one obtains ‘‘combination tones’’ at f
quenciesun1v16n2v2u ~for two input signals of frequency
v1,2) with n1,2 being integers and the symmetry of the sy
tem setting selection rules for the appearance of specific
of combination tones in the response. This case was alre
discussed in the 19th century by von Helmholtz@9# in con-
nection with frequency mixing in the inner ear. With nois
one observes@10# a SR effect at every combination tone th
appears in the output, with the symmetry of the device o
again predicating the appearance of certain sets of freq
cies in the output PSD.

III. GENERAL THEORY

We consider a two-state system. We have in mind a fa
general bistable system, but it will be conceptually con
nient sometimes to use language specific to the Schmitt
ger. The two states correspond to output values1c and
2c, respectively. For convenience, we will also refer to t
states themselves as6c. Following Ref.@8#, we suppose tha
the dynamics is governed by rate equations for the s
probabilitiesp6 that the system is in the state6c,

ṗ15W2~ t !p22W1~ t !p152 ṗ2 , ~1!

whereW6(t) is the transition rateout of the6 state, and the
overdot denotes differentiation with respect to time. In t
modulation schemes we are considering, the transition r
are time periodic. The solution to the linear first-order diffe
ential equation~1! is

p1~ t !5
1

g~ t ! Fp1~ t0!g~ t0!1E
t0

t

W2~ t8!g~ t8!dt8G , ~2!

where

g~ t !5expE @W1~ t !1W2~ t !#dt. ~3!

Replacingp1(t0) in Eq. ~2! with dx0c gives us the condi-

tional probabilityp1(tux0 ,t0) that the system at timet is in
the 1c state given that the state at timet0 was x0 ~which
may be1c or 2c):

p1~ tux0 ,t0!5
1

g~ t ! Fdx0cg~ t0!1E
t0

t

W2~ t8!g~ t8!dt8G .
~4!

The conditional probability density of the two-state outp
x(t) is
e
n-

nd

-
-
of

-

-
ts

dy

,
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p~x,tux0 ,t0!5p1~ tux0 ,t0!d~x2c!1p2~ tux0 ,t0!d~x1c!

5p1~ tux0 ,t0!d~x2c!1@12p1~ tux0 ,t0!#

3d~x1c!. ~5!

The conditional expectation value is

^x~ t !ux0 ,t0&5E
2`

`

xp~x,tux0 ,t0!dx5c@2p1~ tux0 ,t0!21#.

~6!

To focus on generic behavior, independent of initial con
tions, we form theasymptoticexpectation valuêx(t)&as

^x~ t !&as[ lim
t0→2`

^x~ t !ux0 ,t0&5c@2p1
as~ t !21#, ~7!

wherep1
as(t)[p1(tux0 ,t0→2`).

To calculatep1
as(t), notice that the initial condition term

in Eq. ~4! can be rewritten in terms of a definite integral,

dx0c

g~ t0!

g~ t !
5dx0c expH 2E

t0

t

@W1~ t8!1W2~ t8!#dt8J .

~8!

Since the ratesW6 may be assumed to be bounded fro
below by a positive constant, the integral in Eq.~8! will
approach1` as t0→2`, and the initial condition term~8!
will decay exponentially, yielding

p1
as~ t !5

1

g~ t !E2`

t

W2~ t8!g~ t8!dt8. ~9!

We assume that in the adiabatic limit~where the signal
and modulation frequenciesvS,M are well within the trigger
and noise bandwidths!, the rates are given by

W6~ t !5 f @m6hS sinvSt1hM sin~vMt1f!#, ~10!

where, in general, the specific form off would depend on the
system being investigated. The parametersm andhS,M cor-
respond to the thresholdb and signal/modulation amplitude
scaled by the noise power~referred toD or s in the follow-
ing sections!.

Assuming the typical experimental case in which t
starting times from run to run are random with respect to
signal and modulation phases, it is appropriate to average
correlation function over the initial phases. Alternatively, w
can avoid adding another phase variable to Eq.~10! by cycle
averaging the correlation function overt. Here, one cycle is
defined as the period ofW6(t), so we restrict ourselves to
cases wherevS andvM are commensurate frequencies.

Cycle averaging overt yields a stationary correlation
function K̄(t). Taking the longtime limitt→` eliminates
time-decaying correlations~noise background! while pre-
serving correlations that persist indefinitely~signal! @11#.
The resulting initial-phase-averaged asymptotic correlat
function K̄as(t) can be written in terms of the asymptot
expectation value~7! ~see Gammaitoniet al. in @2#!,
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K̄as~t!5Š^x~ t1t!&aŝ x~ t !&as‹t

5^c2@2p1
as~ t1t!21#@2p1

as~ t !21#& t , ~11!

where^•& t denotes a cycle average overt. Fourier transform-
ing K̄as(t) will lead to a formula for the total output power a
the signal frequencyvS .

For small signal and threshold modulationhS,M!1, we
can expand the ratesW6(t) in hS,M ,

W6~ t !5
1

2 (
n50

`

~21!nan@6hS sin~vSt !

1hM sin~vMt1f!#n. ~12!

Here, the an are the expansion coefficientsan
5@2(21)n/n! #@dnf (m)/dmn# @the factor (21)n is included
to keepa1 positive#. For any specific example these coef
cients are found via a formal expansion of the transition ra
W6 . For the Schmitt trigger, these rates can be cast as
inverses of the mean first passage times of a Brownian
ticle to an absorbing barrier at the switching threshold@8#,
provided the noise bandwidth is within that of the device

We can computep1
as(t) to nth order as follows. We use

Eq. ~12! to obtain the rates expanded tonth order. We insert
the expanded rates into Eq.~3! and Taylor expand the expo
nential to obtain an expansion ofg(t) to nth order. We mul-
tiply the nth order expansions ofW2(t) and g(t), discard
terms aboventh order, and integrate to obtain the expans
of *2`

t W2(t8)g(t8)dt8. We multiply the result by thenth
order expansion of 1/g(t) and discard higher order terms
obtain the desired expansion ofp1

as(t) to nth order.
or
e

nc
s
he
r-

n

Having obtained an expansion ofp1
as(t) to nth order, one

can use Eq.~11! to obtain an expansion of the asymptot
correlation function, but to what order is it correct? Fir
note that in the unmodulated case (hS,M50) the ratesW6

are equal, implyingp1
as(t)51/2. This implies that in an ex-

pansion of 2p1
as(t)21, the lowest order term is of at leas

first order inhS,M . It follows that annth order expansion of
p1

as(t) will give us an asymptotic correlation function~11!
with a leading order of at least 2. Also, the asymptotic c
relation function will be correct to~at least! ordern11.

A. Double frequency modulation

At this stage in the calculation we specify the barr
modulation frequencyvM . We will begin with the case
vM52vS ; in Sec. III B we will turn to the case of equa
frequency modulation.

It turns out that the required calculations are rather
volved, because to attain a sufficiently accurate and con
tent final result@Eq. ~17! below#, we have to keep terms
through cubic order in the expansion~12!. As a result, the
expressions for the intermediate steps are very long, wh
unfortunately tends to obscure the essential structure of
derivation. Therefore, for the sake of clarity we present h
the calculation of the power spectrum in which we trunc
the expansion~12! after its quadratic term. We then simpl
quote the final result of the derivation which keeps the hig
order terms. The interested reader can find full details of
latter derivation on AIP’s Electronic Physics Auxiliary Pub
lication Service~EPAPS! @13#.

Following the procedure outlined in Sec. II, we find E
~9! to quadratic order in (hS ,hM)
p1
as~ t !5

1

2
1

a1hS@2vS cos~vSt !1a0 sin~vSt !#

2~a0
21vS

2!
2hShMF ~a02a22a1

2!cos~vSt1f!12a2vS sin~vSt1f!

4~a0
21vS

2!

1
1

8 S 2a1
2

a0
21vS

2
1

2a02a223a1
2

a0
219vS

2 D cos~3vSt1f!1
vS~6a0

2a216a2vS
224a0a1

2!

4~a0
21vS

2!~a0
219vS

2!
sin~3vSt1f!G . ~13!

Sincep1
as(t) was expanded to quadratic order,^x(t1t)&aŝ x(t)&as is correct through third order,

^x~ t1t!&aŝ x~ t !&as5
c2a1

2hS
2

2~a0
21vS

2!
S 12hM

a1
2vS cos~f!2~a0

22a22a0a1
212a2vS

2!sin~f!

a1~a0
21vS

2!
D cos~vSt!1••• ~14!
plus a multitude oft-dependent terms of the form cos
sin(NvSt1•••), whereN is a nonzero integer. None of thes
terms will survive the process of cycle averaging overt that
yields the initial-phase-averaged asymptotic correlation fu
tion K̄as(t)5Š^x(t1t)&aŝ x(t)&as‹t .

From the coefficient ofd(v2vS) in the ~one-sided!
power spectrum 2*2`

` K̄as(t)e2 ivtdt, we find that the total
output power at the signal frequencyvS is
-

pc2a1
2hS

2

a0
21vS

2 F12hMa1H vS cosf1a0 sinf

a0
21vS

2
2

2a2

a1
2

sinfJ G
~15!

for vM52vS . One can rewrite Eq.~15! in the following
manner:
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pc2a1
2hS

2

a0
21vS

2 F12hMa1H sin~f1Q!

Aa0
21vS

2
2

2a2

a1
2

sinfJ G ,

~16!

with Q5tan21(vS /a0). As noted earlier,a1 is a positive
coefficient.

The same steps leading to Eq.~15! can be retraced usin
a less severe truncation of the transition ratesW6(t). As we
show later, all the key features of the controlled SR sche
are reproduced if we keep terms through cubic order as
dicated in Eq.~12!. The details of the derivation can b
found elsewhere@13#. The result corresponding to Eq.~15! is

pc2a1
2hS

2

a0
21vS

2 F12hMa1S vS cosf1a0 sinf

a0
21vS

2
2

2a2

a1
2

sinf D
1hM

2 S a2
213a1a3

a1
2

1
a1

226a0a2

2~a0
21vS

2!
1

3a1
224a0a2

4a0
2136vS

2 D
1

3

2
hS

2S a3

a1
2

a0a2

a0
21vS

2D G . ~17!

B. Equal frequency modulation

We performed analogous calculations as above for
casevM5vS , which is straightforward but tedious. Her
we present only the final expression for the output powe
the signal frequencyvS . The interested reader can find th
complete derivation on the Internet@13#. The result is
y
w
tw
uc
es
er
th

th

up
e
n-

e

t

pc2a1
2hS

2

a0
21vS

2 F11hM
2 H ~a1

22a0a2!~a0 cos 2f2vS sin 2f!

2a0~a0
21vS

2!

2S a2

a0
2

3a3

2a1
D cos 2f2

a2

a0
1

3a3

a1
2

a0a2

a0
21vS

2

1
a1

22a0a2

a0
214vS

2 J 1
3hS

2

2 S a3

a1
2

a0a2

a0
21vS

2D G ~18!

for vM5vS . We note that the lowest order correction to t
signal power is quartic, compared to cubic in the dou
frequency case. In order to get consistent results to this or
the expansion of the rates~12! has to contain all terms up to
and including cubic order. As above, we can introduce
phaseQ5tan21(vS /a0) and rewrite Eq.~18! as

pc2a1
2hS

2

a0
21vS

2 F11hM
2 H ~a1

22a0a2!cos~2f1Q!

2a0Aa0
21vS

2

2S a2

a0
2

3a3

2a1
D cos 2f2

a2

a0
1

3a3

a1
2

a0a2

a0
21vS

2

1
a1

22a0a2

a0
214vS

2 J 1
3hS

2

2 S a3

a1
2

a0a2

a0
21vS

2D G . ~19!

C. dc symmetry breaking

It is worthwhile emphasizing a unique qualitative featu
of the controlled SR scheme. While a traditional SR expe
ment ~i.e., one with no barrier modulation! on a symmetric
Schmitt trigger yields zero average dc output, the bar
modulation can break the plus-minus symmetry between
two states and thereby generate a finite dc output power.
effect occurs only for equal frequency modulation. Analy
cally, the dc term in the power spectrum arises from
t-independent term in the autocorrelation function@13#. The
expression for the dc part of the power spectral den
(vM5vS) is
Pdc5
pc2hM

2 hS
2@~2a0a1

212a0
2a212a2vS

2!cosf1a1
2vS sinf#2

2a0
2~a0

21vS
2!2

. ~20!
e
si-
h
non-

ar-
ua-
ec-
Intuitively, the origin of this effect can be understood b
contemplating Fig. 6. There are two contributions. First,
can see that the modulation induces an asymmetry in the
transition rates, keeping in mind that the transitions are m
more likely to occur when the barrier distance is small
~denoted by the two arrows in the figure; we refer the int
ested reader to the Appendix for a brief discussion on
existence of this minimum distance!. For example, whenf
50, the upward transition rate is much smaller than
downward rate, and the reverse is true whenf5p. This
asymmetry leads to the cosf term in Eq.~20!. The second
effect, which gives rise to the sinf contribution, reflects a
difference between the time intervals between optimal
e
o
h
t
-
e

e

-

down and down-up transitions. Again looking at Fig. 6, w
see forf5p/2 that the separation between optimal tran
tion points is significantly different from a half-period, whic
results in an asymmetric output square wave, and thus a
zero average~dc! component.

IV. COMPARISON WITH NUMERICAL SIMULATIONS

A. Direct simulations of the truncated rate equations

As a first step in testing the analytic predictions, we c
ried out direct simulations of the time-dependent rate eq
tions. In general, the experimentally measured power sp
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tral densitySexpt relates to the theoretical signal powerP
@given by either Eq.~18! or Eq. ~17!# in the following man-
ner @8#:

Sexpt5
PG1ND

D
.

Here, D is the bin width of the measured power spect
density,N is the noise background power spectral density
the signal frequency, andG is the so-called processing ga
factor ~typically between 0.5 and 1!, which is an effect of
windowing the time series before Fourier analyzing it. In
subsequent simulations we employed a Welsh window w
a processing gainG50.83.

In order to check the consistency of our numerical alg
rithm, we numerically integrated the rate equations as gi
by Eq. ~12!, including terms up to fourth order, in the fo
lowing manner. At each time step a random numberj is
chosen uniformly on the interval@0,1#. If the system is cur-
rently in the6 state,j is compared withp6(t)5DtW6(t),
whereDt is the time step. Ifj,p6 , the system is change
to the other state@8#. Figure 9 shows a comparison betwe
the theoretical predictions and the results from the rate eq
tion, for the output signal power as a function of the mod
lation phase. Because of the various approximations in
course of the derivation of Eqs.~18! and ~17! we do not
expect perfect agreement. Nevertheless, the matching is
enough to strengthen our confidence in the numerical res
presented in the subsequent subsections.

FIG. 9. Output signal powerP vs phasef from direct simula-
tions of the rate equations~12! for vM5vS ~top! and vM52vS

~bottom!, respectively. The dashed line in each figure is the co
sponding theoretical result~18! and ~17!, respectively. Paramete
values area050.371745 1

2 a15
1
2 a25

3
4 a3 , c55.66, hS58c/D,

hM516c/D, andD5140.
l
t

l
h
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B. The double-well system

It is of interest to test the developed two-state theory
systems with continuous state variables. Here, we cons
the simplest bistable dynamic potential

U~x!52
a

2
x21

b

4
x4, ~21!

where the potential minima are at6c56Aa/b, and U0
5a2/4b is the~unmodulated! barrier height. We furthermore
consider the limit of large damping and thus assume that
Langevin equation is given by

ẋ52]xU~x!1ADj~ t !, ~22!

wherej(t) is d-correlated white noise with unit variance, s
that

^j~ t !j~ t8!&5d~ t2t8!. ~23!

We also restrict ourselves to the high-barrier, adiabatic lim
so that we may identify the transition ratesW6 with the
Kramers rate, to a good approximation, which in the abse
of modulation is given by

W65
AU9~0!U9~c!

2p
exp@22U0 /D#. ~24!

It is worth noting that the Kramers rate is derived under
assumption that the probability density within a well
roughly at equilibrium. That is still the case if the sign
frequency is much lower than the rate at which the proba
ity equilibrates, which is simplyU9(6c). Thus we require
v!U9(6c)52a. In the vast majority of the SR literatur
@2,8# the modulation term (;USx sinvSt) is simply added to
the right side of Eq.~21!. This has the effect of not only
modulating the barrier heights, but also the position of
potential extrema and their curvatures. On the other han
is conceptually simpler to modify only the barrier heights,
that the modified Kramers rate becomes

W6~ t !5
a

A2p
exp$22@U06US sinvSt

1UM sin~vMt1f!#/D% ~25!

Equation~25! is true only to linear order if one merely add
the modulation terms to the potential~21!. Here we use an
alternative approach which alters the barrier height direc
This has the advantage of giving a consistent path from
~24! to Eq. ~25!; the disadvantage is that the simpler pictu
is slightly less elegant algebraically. Since the curvatu
U9(0)52a, U9(c)52a do not depend on the parameterb,
it is possible to modulate the barrier heighta2/4b and keep
the curvatures and thus the prefactor in Eq.~24! constant. In
order to implement the symmetric barrier modulation and
asymmetric ‘‘rocking’’ of the potential, we allow the barrie
height, and thusb, to depend onx andt and to be different on
each side of the origin,

-
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b→b~x,t !5b1~ t ! if x>0

5b2~ t ! if x,0

with

a2

4b6~ t !
5U06US sinvSt1UM sin~vMt1f!

⇒b6~ t !

5
a2

4@U06US sinvSt1UM sin~vMt1f!#
.

~26!

Modulating the coefficientb from Eq. ~21! in such a way
guarantees that, within the adiabatic approximation, Eq.~25!
is exact. We emphasize that we chose this modulation
mere technical convenience to avoid further approximatio

Comparing Eqs.~10! and ~25!, we havem5U0 /D, hS
5US /D, hM5UM /D, and

f @m6hS sinvSt1hM sin~vMt1f!#

5~a/A2p!exp$22@m6hS sinvSt

1hM sin~vMt1f!#%,

a052 f ~m!5
A2a

p
exp~22U0 /D !,

a1522
d f~x!

dx U
x5m

5
2A2a

p
exp~22U0 /D !52a0 ,

~27!

a25
2

2!

d2f ~x!

dx2 U
x5m

5
2A2a

p
exp~22U0 /D !5a1 ,

a35
22

3!

d3f ~x!

dx3 U
x5m

5
238a

6A2p
exp~22U0 /D !5

4

3
a0 .

In Fig. 10 we compare the analytical predictions~bottom
panels! against numerical simulations~top panels! for the
case of double frequency modulation,vM52vS , using
‘‘typical’’ parameter values. The agreement is good. For
case of single frequency modulation,vM5vS , Fig. 11
shows a similarly good match between the fourth order re
~18! and numerical simulations of the double well potenti

As we alluded to in Sec. III C, the average dc outp
predicted by Eq.~20! can be compared to numerical simul
tions. This comparison is shown in Fig. 12, where we ha
plotted the square of the averaged mean value ofx. The
agreement is rather good. We also see that the dc outp
largest close to phasesf50 andp, which indicates that for
this system the cosf term in Eq.~20! is dominant over the
sinf contribution. It follows that the corresponding physic
mechanism reflected in the data is a modulation-indu
asymmetry in the up/down transition rates~see the discus
sion in Sec. III C!.

C. The Schmitt trigger

A dynamical model for the Schmitt trigger was introduc
previously @Eq. ~6.21! in Ref. @8##. We can modify that
a
s.

e

lt
.
t

e

is

l
d

model to fit the present situation by including the thresh
modulation in the effective gaing̃5g1eMcos(vMt1f),

y5sgn@ g̃y2eS cosvSt2x#,

ẋ52kx1sj~ t !. ~28!

Here, x represents colored noise with correlation timetc
5k21 @j(t) is d correlated white noise with unit variance# so
that the variance ofx is ^x2&5s2/2k. In order to evaluate the
analytic predictions, we need expressions for the expan
coefficientsan up to n53. We find

Ap

k
a05S E

2m

m

eu2
f~u!duD 21

,

Ap

k
a15

em2
~f~m!2f~2m!!

S E
2m

m

eu2
f~u!duD 2 ,

FIG. 10. Output signal power vs input noise strengthD and
modulation phasef for the double well system withvM52vS .
Top: digital simulations; bottom: the analytical predictions~17!.
The gray scale range is~0,20!. Parameter values areU05256, 2c
511.13,US58, andUM516
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Ap

k
a25

e2m2
f̃~m!2

S E
2m

m

eu2
f~u!duD 3 2

em2
m@f~2m!1f~m!#

S E
2m

m

eu2
f~u!duD 2 ,

Ap

k
a35

e3m2
f̃~m!3

S E
2m

m

eu2
f~u!duD 4

2
2me2m2

f̃~m!@f~2m!1mf~m!#

S E
2m

m

eu2
f~u!duD 3

1em2 ~2m211!f̃~m!14mf8~m!1f9~m!

3S E
2m

m

eu2
f~u!duD 2 ,

~29!

wheref(m) is the probability integral

FIG. 11. Output signal power vs input noise strengthD and
phasef for the double well system withvM5vS . Parameters are
as in Fig. 10. There is excellent agreement between the simula
~top! and the analytic predictions~18! ~bottom!. The gray scale
range is~0,10!.
f~m!5
1

Ap
E

2`

m

e2u2
du S ⇒f8~m!5

1

Ap
e2m2

andf9~m!5
22m

Ap
e2m2D

and

f̃~m!5f~m!2f~2m!5
1

Ap
E

2m

m

e2u2
du.

@Expressions for the first two coefficients can be found
Eqs.~6.13! in @8#.#

Using the notation of Sec. III, we letm5gAk/s, hS

52eSAk/s, andhM52eMAk/s. In order to obtain a quali-
tative agreement with the experimental results from Fig.
we replaced the parameters in Eqs.~29!, ~18!, and ~17! by
their actual experimental values but foreS and eM , which

ns

FIG. 12. Average dc output vs phasef and input noise strength
D in the case of equal frequency modulation for the Duffing syst
~21!. Parameters are the same as in Fig. 11. The top panel sh
data from numerical simulations; the bottom panel displays the
diction ~20!. The dependence onD is implicitly defined via the
expressions for the expansion coefficients~27!. The gray scale
range is~0,300!.
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are chosen smaller~by a factor of 10! in order to stay within
the perturbation theory approximation. The relatively lar
barrier modulation (AM5200 mV) in the experiment is be
yond the low-order expansion. Figure 13 displays the th
retical results~18! and ~17!, respectively, utilizing the nu-
merically computedan given in Eq. ~29!. The analytical
results agree qualitatively with the experimental results p
sented in Sec. II.

V. SUMMARY

To summarize, we have developed a general theore
framework for stochastic resonance in threshold-and-bar
modulated bistable systems. The two-state theory succ
fully describes the low-order effects of a general nonfe
back control scheme, which can both enhance

FIG. 13. Theoretical output signal power vs noise powerD and
phasef using the expressions~29! for the an . Equation~18! is
displayed in the top panel, Eq.~17! in the bottom panel. Paramete
are as follows: k510 kHz, g5300 mV/9 V5

1
30, c59,v

52p64 s21, eS51/3000,eM51/450. Notice that the experimenta
values eS

exp530 mV/9 V510eS , and eM
exp5200 mV/9 V510eM

are larger by a factor of 10. The qualitative agreement with
experimental results from Figs. 8~b! and 8~c!, respectively, is excel-
lent.
e

-

-

al
r-
ss-
-
e

‘‘classical’’ SR effect and also suppress the response t
weak signal. Experiments were carried out on a generic
chastic resonator~a modified Schmitt trigger!. Our experi-
mental results are confirmed in computer simulations of
Schmitt trigger as well as in a potential double-well syste
Within a range of signal and modulation amplitudes, t
theory predicts the optimum phase difference and no
strength for maximum enhancement or suppression of
output signal power. The theory also shows good agreem
with secondary effects, such as the dc offset for equal
quency modulation as well as a frequency dependent ‘‘dri
of the peak signal power for higher noise power. The go
agreement found in our studies suggests that applicatio
the theory to bistable systems other than the double well
the Schmitt trigger should work equally well. The key ingr
dient in any particular example is a knowledge of the tran
tion rates, which could either be determined from first pr
ciples or directly measured.

We believe that controlled SR may be useful in applic
tions as diverse as the cancellation of power-line frequen
in very sensitive magnetic sensing applications with sup
conducting quantum interference devices~SQUIDs! and vi-
bration control in nonlinear mechanical devices, as well as
the context of electromagnetic field interactions with ne
ronal tissue@6#, where control of internal thresholds is po
sible @12# and the selective suppression of specific frequ
cies could potentially be beneficial. Future work will aim
develop analytical expressions for the background no
power and also address the interesting case of incomme
rate frequencies.
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FIG. 14. Visualization of the region on parameter space
which @du

eff(t)#9u tu
.0 and@dl

eff(t)#9u t l
.0 as a function of the ratio

r 5AS /AM and phase shiftf. Both quantities are positive in the
white region, while one of the two is negative in the black regio
Note that the minima in the distances disappear for small value
r, i.e., if AS!AM .
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APPENDIX: EXISTENCE OF MINIMUM BARRIER
DISTANCE

For vM5vS , the ‘‘distance’’ between the signal and th
~modulated! threshold

d~ t !5du~ t !5b1AM sin~vSt1f!2AS sinvSt

if 0<vSt<p

5dl~ t !5b1AM sin~vSt1f!1AS sinvSt

if p<vSt<2p ~A1!

depends on the four parametersb,AM ,AS , andf. If one is
only interested in the existence of a minimum during the
and the down cycle, one can eliminate the offsetb and re-
write Eq. ~A1! as

deff~ t !5du
eff~ t !5sin~vSt1f!2r sinvSt if 0<vSt<p

5dl
eff~ t !5sin~vSt1f!1r sinvSt if p<vSt<2p,

~A2!

where deff5(d2b)/AM depends on only two parameter
namely the phasef and the amplitude ratior 5AS /AM . To
find the minimum distances we set (du

eff)850 on the interval

vStuP@0,p# and (dl
eff)850 on the intervalvSt lP@p,2p#,
y
.

v.

,
J.

-
v/
p

respectively. Here, the prime denotes differentiation with
spect to time. We find

vStu5arccosS 2
sinf

Ar 222r cosf11
D ,

vSt l52arccosS 2
sinf

Ar 212r cosf11
D .

It can happen that one of these extrema is actually a m
mum. The intuitive arguments in Sec. III C about the resu
ing dc offset are meaningless unless the distance takes
minimum in both partitions of the drive cycle, so we mus
check the second derivatives as well. These extrema
minima only if the second derivatives are greater than ze
The result is depicted in Fig. 14. Note that the role ofvS is
merely to scale the time axis, i.e., it determines the locat
of the minima in time but not their existence. Figure 14 th
depends only on two parameters, the phasef and the ratior.
The black regions show the parameter combinations
which one of the extrema is a maximum; the white regio
are where both@du

eff(t)#9u tu and@dl
eff(t)#9u t l

are positive. The
figure reflects the fact that for small enough values of
ratio AS /AM , one of the minima in the up- and down
partition of the drive cycle changes into a maximum ove
range of phase values. This is in contrast to the unmodula
case (AM50) where a minimum always exists and is we
defined.
ol-
du/
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